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The two “hybrid” scenarios

• A: 3×1012/166.67 msec B: 2×1012/100 msec
⇒ 〈dN/dt〉 = 18×1012/ sec, in each scenario.

• Replaced the dreaded “baseline scenario” of 2008-2009.
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Some parameters

Quantity Unit Value

Beam
Kinetic energy Gev 8
Momentum GeV/c 8.88889, 8.88626(a)

Bρ T-m 29.6501(d)

(β,γ,βγ) ( 0.994, 9.526, 9.474 )(d)

(∆E)max MeV 100(k)

(∆p/p)max 0.0113(d)

(∆t)rms nsec 20-50( f ) (nominal: 40)
Initial emittance π mm-mr 10-25 /βγ
Intensity Tp (1012 protons) 3(b), 2(c)

Debuncher
Circumference m 505.283, 505.294(a)

Rev. period µsec 1.695(d), 1.685( f )

Rev. frequency kHz 590.038(d), 590.018(a)

Spill time(g) msec 166.67(b), 100(c)

Nturns/spill 98,328(b), 58,997(c)

〈dN/dn〉 Mp (106 protons) 30.51(b,d), 33.9(c,d)

〈dN/dt〉 Tp / sec 18(d,h)

Resonant tunes 29 / 3(i), 19 / 2( j)

Acceptance π mm-mr 335(a)/βγ

RF
Harmonic number 4
Frequency MHz 2.36(d)

Voltage kV 32

(a) Taken from Steve Werkema’s presentation of November 18, 2008.
(b) Hybrid A scenario.
(c) Hybrid B scenario.
(d) Calculated from other parameters.
(e) Tentative value, from 2008.
( f ) From Mike Syphers’ Mu2e-doc-585-v3
(g) These numbers assume a 15 Hz Booster cycle. This is the total time alloted to extract beam. It should be reduced by≈ 10%
to allow for setup before and cleanup after extraction.
(h) The gap in Hybrid B must be taken into account.
(i) Third integer.
( j) Half integer.
(k) This refers to the full width; that is,(∆E)max = 2(E−E0)max
(l) For third-integer extraction: 393 kHz≈ (2/3) ·590 kHz
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Two resonances; horizontal phase space

• Third-integer resonance separatrix

xm

xr

• Half-integer resonance separatrix
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Harmonic sextupoles and quadrupoles

• Location of harmonic sextupoles on two orthogonal circuits
configured for third-integer resonance extraction.

• Location of harmonic quadrupoles on two orthogonal circuits for the
half-integer configuration in which the straight sections’cells have been
set individually to 60o, as in the arcs.

• Oh, yes . . . there is
a septum and a lam-
bertson too.
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Anticipated VG: Simulation of third-integer extraction
including space charge

• On the left are plots of the quadrupole circuit ramp, tune, sextupole
ramp, and beam intensity during the spill. On the right, the green trace
shows the turn-by-turn structure of the spill, while the redfollows the
field strength, on a log scale, of the RFKO oscillator.

• RFKO by itself is not strong enough to control fully the spillrate;
micro-adjustment of the tune ramp is needed.
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Orbit bounds
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Phasor stability of third-integer resonance
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2β a = x+ i(αx+βx′)

• Hamiltonian exemplar for third-integer resonance:

H = ∆νa∗a− iga3+ ig∗a∗3+ · · ·

= ∆ν I − (ge−i3ϕ +g∗ei3ϕ ) I3/2 + · · · .

• ∆ν = νx−29/3≈ 0 is the difference between the linear (small amplitude) horizontal
tune and the resonant tune and is presumed to be small; the “resonance coupling
constant,”g, is a linear functional of the sextupole field strength distribution.

g =
i

6
√

2

1
4π ∑ B′′l

Bρ
β3/2

1 (θ)e−i 3(ψ1(θ)−∆ν·θ)

• The phase of the complex parameterg determines the orientation of the third-integer

separatrix: |a0 |ei3ϕ0 = ∆ν/(3g∗).

• The phasors ing’s summand are reasonably stable during the squeeze. Thus, there

should be no need for sextupoles to “track” the tune.
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Half-integer resonance exemplar

• Hamiltonian exemplar for half-integer resonance:

H = ( ∆ν− G2e−i2ϕ −G∗
2ei2ϕ ) I + G4 I2 + · · · ,

where∆ν ≡ νx−19/2≈ 0 is “small,” and

G2 =
1
8π ∑

quadrupoles

δB′l
|Bρ| βx e−i2(ψx−∆·θ)

G4 =
1

32π ∑
octupoles

B′′′l
|Bρ| β2

x

• The expression “δB′ ” indicates that only the fraction of quadrupole strengthnot
contributing at first order to the tunemust be used in the summand forG2.

r2 = −∆/2G4 ,

c∗2 = −G2/G4 , and

|a0|2 = r2−|c|2 = − ∆
2G4

− |G2|
|G4|

=
sgn(∆) ·2|G2 |−∆

2G4
.

• Note: (a)G4 and∆ must have opposite signs and (b) the stopband is±2|G2 |.

Fermilab November 22, 2010 Resonant extraction ... Mu2e LeoMichelotti Page 8



Stepsize: third-integer; analytic
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• For the “nominal” wire at 1.6 cm, at the extreme orientation,no
particle crosses wire before its “reach” exceeds 5 cm. Even at
ϕ0 = −120o, we needεb ≥ 30 π mm-mr (or thereabouts) before it falls
below this bound.
• Placing wire closer increases inefficiency, so there is a tradeoff.
• Beyondϕ0 = −150o particles would travel inwards, toward the center
of the bunch, before being extracted.
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Stepsize, third integer: theory and simulation
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• Comparison of previously calculated stepsize curves with simulations.
Plots shown in the range−150◦ ≤ ϕ0 ≤−120◦; εx ·βγ = 10π mm-mr.
• Independent particle tracking; i.e. no space charge effects.
• As expected, theory overreaches, but agreement is better than
expected.
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Inefficiency, third-integer: theory and simulation
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• Comparison of previously calculated inefficiency curves with
third-integer simulations.

• Bottom line: Getting below 5% inefficiency at the septum should not
be difficult; 2%-3% may be doable; below that cannot be guaranteed
without reducing the wire size.
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Stepsize and inefficiency: half-integer; quadrature
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• Calculations carried out assuming the ratio,εb/εc = π/(3
√

3), for
invariant emittanceβγ εb/π = 20,30,40,50 mm-mr.
• Initial tune: (∆ν)initial = −0.02. Two lobes of the 1/2 integer separatrix
separated ”horizontally” in (normalized) phase space: i.e. ϕ0 = ±180o.

• Standard 100µm wire width; “nominal” placement,xw ≈−1.6 cm.
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Inefficiency, half-integer: theory and simulation
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• (Not quite) comparison of previously calculated inefficiency curves
with half-integer simulations.
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Simulation of third-integer extraction
including space charge

• On the left are plots of the quadrupole circuit ramp, tune, sextupole
ramp, and beam intensity during the spill. On the right, the green trace
shows the turn-by-turn structure of the spill, while the redfollows the
field strength, on a log scale, of the RFKO oscillator.

• RFKO by itself is not strong enough to control fully the spillrate;
micro-adjustment of the tune ramp is needed.

Fermilab November 22, 2010 Resonant extraction ... Mu2e LeoMichelotti Page 14



Extracted beam

• Phase space

• Histograms

• Warning: plots made at septum, not lambertson.

• Histograms reveal distribution’s skew.

• With origin set at centroid, the ellipse enclosing 99% of thebeam
corresponds toβx = 14 m,αx = −0.57, andεx/βγ = 1.2π mm-mr.
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Tune scans in Debuncher (w/ B.Drendel, J.Morgan)

• Nearνx = 29/3

• Nearνx = 19/2

• The strong (|∆νx| < 0.025 ) half-integer stopband would have to be either nullified

or mapped and controlled.
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Original motivation for the tune scan

• Extreme simulation: protons lost along parasitic resonances.
• “Extreme” means (a) 12×1012 protons per bunch and (b) zeroδp/p.
• Shown at Mu2e Collaboration Meeting on June 3, 2010.
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More recent tune footprints

• Tune footprints have improved because of reduced intensityof the
Hybrid scenarios and effect of Debuncher dispersion on non-zeroδp/p
orbits.
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• Loss ratio before extraction begins is now estimated at≈ 10−4.
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Where we are . . .

• Lattice models.
⇒ Accumulator and Debuncher lattice files written based on

pbar source conceptual design reports are adequate (for now) to
study half-integer and third-integer extraction.

◦ After CD-1 approval, more “dirt” will be added to the
model: e.g. power supply ripple, misalignments, closed orbit
control and error fields.
⇒ Control multipoles placed in two of the three straight

sections; extraction septum and lambertson in the third. Care taken
to maintain zero dispersion in straights.

• Theory and quadrature.
⇒ Basic theory understood and programs written to perform

analysis and quadrature: e.g. stepsize and inefficiency. In
reasonable shape, but not finished. Studies will continue.

• Simulations.
⇒ Independent particle simulations (CHEF), based on our

Debuncher lattice model, adequately validate third-integer
resonance theory; work continuing on the half-integer comparisons,
but so far no “red flags.” Confident theory can be used for
conceptual design.
⇒ Software for multi-particle simulations (ORBIT and

SYNERGIA) “works” and is being used.
◦ But not without engaging challenges: e.g. parallel

computing glitches; software instabilities.

• Machine studies.
⇒ Debuncher tune scans finished for now. MI half-integer

studies devolved into studying the Main Injector rather than the
half-integer resonance. Given three more months to work with,
more may be done, but it depends on time and resource conflicts
with competing activities.
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Conclusions . . .

• This year’s “hybrid” scenarios, with their reduced intensities, and
large dispersion in the Debuncher arcs reduce the space charge tune
footprint enough to make slow extraction conceivable.

• Recommend RFKO be added to Fermilab’s suite of control devices
to “heat” beams with initially small emittances.

• Have (reasonably) successfully simulated slow third-integer
extraction in the presence of space charge. Space charge still needs
to be added to a half-integer simulation. Continuing analysis
needed for both.

• A few hundred to (less than) a thousand turns suffice to acclimate
an injected bunch to its separatrix. (The time budget of the Hybrid
scenarios allow for several thousand.)

• For perfect model, currently estimate loss ratio of a few 10−4 before
extraction begins, presumably due to parasitic resonance lines.

• Roughly, 3%-5% of protons will be lost hitting the septum’s wire.
This is more problematic for small emittances and half-integer
resonance.

• Currently, third integer preferred to half-integer.

• If the instability studies hold up, chromaticity can be small. This
will reduce reduce “blurring” the separatrix due toδp/p.

• Two cost estimates done: six sextupoles will cost≈ $340,000;
RFKO,≈ $59,000-$160,000, depending on power considerations.
(Thanks to Dave Harding, Tom Gardner and Dave Wildman.)
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Concerns

• Finish septum and lambertson design bounds based on stepsize,
inefficiency, and aperture considerations.

• Hardware specification list(s) and cost estimate(s) barelybegun.
Must be finished before CD-1 review.

• Map distributions of losses around the ring and (phase space)
protons injected into transfer line.

• What is the real requirement on turn-by-turn stability??? (Meeting
to take place next month.)

• What instrumentation and control (if any) can achieve this
requirement?

• Integrate better (or at all) with extraction beamline.
⇒ Missing segment: lambertson to the “stub.”
⇒ 6D phase space distributions and histories at entrance to

extraction line.

• Finish comparison and interpretation of theory and independent
particle simulations for half-integer inefficiency (and stepsize).
⇒ Recommend design parameters based on these.

• No simulation yet of half-integer resonance extraction with space
charge included.
⇒ How much should this be pushed? Should we deprecate

half-integer extraction and be done with it?

• Engineers and scientists needed: hardware design, cost estimates,
instrumentation and controls.
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EXTRA VIEWGRAPHS

ALL VIEWGRAPHS BEYOND THIS POINT ARE “EXTRA.”
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Activities

Three facets:

• Orbit theory of resonance:

⇒ Analysis: substance identical to 25-40 forty years ago but
different form.

⇒ Quadrature: a few calculations can be done: stepsize,
”(in)efficiency”

• Simulations

⇒ Independent particles: to test theory. (Missing terms can haunt you.)

⇒ Multiparticle: including space charge.

• Experiments (i.e. machine studies)

⇒ Tune scans of Debuncher.

⇒ Half-integer extraction from Main Injector.

Underneath them all:

• “Clean” accelerator models:

⇒ MAD v.8 lattice files written for Debuncher and Accumulator
using descriptions written inThe Fermilab Antiproton Source
Design Report(c.1982).

⇒ Debuncher file later translated into Optim syntax too.

• Software:

⇒ MAD: redesigning phase advances and lattice functions.

⇒ ORBIT: 2 D & 2.5 D space charge calculations

⇒ SYNERGIA: 2 D & 3 D space charge calculations

⇒ CHEF: build model from MAD description; independent
particle tracking; construct transfer maps for SYNERGIA

⇒ OPTIM: construct transfer maps for ORBIT

Fermilab November 22, 2010 Resonant extraction ... Mu2e LeoMichelotti Page 23



Hardware costs

• SEXTUPOLES (third-integer)For third-integer extraction we are proposing two familiesof three bussed sextupoles
possessing the following properties:
◦ Integrated strengths (for each):|B′′l | is in the range 30-110 T/m, depending on assumptions going into various scenarios;
approximately 50 T/m is a reasonable estimate.
◦ Length: 25-50 cm.
◦ Minimum horizontal aperture: about 6-8 cm???
◦ Ramp time: under some scenarios, sextupoles would be DC, notramped. Under others, they would have to go from zero to
full field in something like 5 msec.
◦ We assume no constraints on outside dimensions.
◦ Field quality: the canonical ”few parts in 104 at one inch” is expected to be adequate - possibly even betterthan needed.
The estimated costs required to construct six such magnets are:

Material: $27,720
Labor : $104,640
EDIA : $146,496
Tooling : $52,000
------- --------
Total : $340,000

• RFKO oscillatorAn important new component - definitely to be used for third-integer extraction and most probably for
half-integer as well - will be a horizontal electric field oscillator to implement RF knockout. We expect that a Tevatron style
damper would accomodate its requirements:
◦ Frequency: 3 kHz to 10 MHz
◦ Maximum field amplitude: 8.6 kV/m
◦ Length:≈ 1.4 m
◦ Gap: 6.4 cm
If so, a spare is available at no “extra” cost for construction. However, two power amplifiers of 800 Watts each will cost
$59,000; or two 1.5 kWatt commercial amplifiers would cost $160,000. Those are hardware costs alone.

• NO COST ESTIMATES forseptum and lambertson, trim quadrupoles (tune control), Octupoles and harmonic quadrupoles

(half-integer), diagnostics and control.
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Documents in Mu2e docdb

Documents were added to the Mu2e document database throughout
2009-2010. As of September:

415-v3 Accumulator & Debuncher Overview
422-v1 Third Integer Extraction from the Debuncher
423-v1 3rd Integer Extraction from Debuncher Progress Report, Part II
457-v1 Phase Space of Tune Scan
512-v0 Space Charge Simulations for the Mu2e Experiment at Fermilab
537-v1 Space Charge Update
549-v1 Space Charge Calcs Update
555-v1 Half-Integer Resonant Extraction from the Debuncher
556-v3 Preliminaries toward studying resonant extraction

from the Debuncher
576-v1 An Alternative Approach to 1/2-Integer Resonant Extraction

Using a Supplementary 0th-Harmonic Quadrupole Circuit.
673-v1 Debunch20081112.lat
744-v1 Proton Delivery
768-v4 Documents on resonant extraction
775-v1 On using the RFKO method for resonant extraction
878-v3 Parameters for simulating extraction from the Debuncher
879-v1 March 12, 2010: Meeting with controls and machine experts

re extraction studies.
980-v1 Procedure for preparing a simulation

of half-integer extraction
982-v1 Status of Extraction Studies

1021-v1 Step size, efficiency, and the septum; notes from quadrature.
1024-v1 Status: extraction studies from Main Injector.
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